# Chapter 1 Introduction to Electrostatics

# 1.9 Uniqueness of the Solution With Dirichlet or Neumann Boundary Condition

appropriate B.C. on the closed surface S \mathbb{S} , for 2Φ=ρ/ϵ0 \nabla^2 \Phi = - \rho / \epsilon_0 inside V \mathbb{V}

Dirichlet B.C. :ΦNeumann B.C. :ΦnCauchy B.C. :Φ  &  Φnover specification \begin{aligned} \text{Dirichlet B.C. :} &\quad \Phi \\[0.8em] \text{Neumann B.C. :} &\quad \dfrac{\partial \Phi}{\partial n} \\[0.8em] \text{Cauchy B.C. :} &\quad \Phi \;\&\; \dfrac{\partial \Phi}{\partial n} \rightarrow \text{over specification} \end{aligned}

prove : If Φ1,Φ2 \exist \, \, \Phi_1 , \Phi_2 satisfying the same B.C.

{Φ1=Φ2=ΦD on SΦ1n=Φ1n=ΦN \left\{ \begin{aligned} \displaystyle \Phi_1 = \Phi_2 = \Phi_D \text{ on } \mathbb{S} \\ \displaystyle \frac{\partial \Phi_1}{\partial n} = \frac{\partial \Phi_1}{\partial n} = \Phi_N' \end{aligned} \right. U=Φ2Φ1 U= \Phi_2 - \Phi_1 2Φ1=2Φ2=ρ/ϵ0 \nabla^2 \Phi_1 = \nabla^2 \Phi_2 = - \rho / \epsilon_0

From Green’s first identity, take ϕ=ψ=U \phi = \psi = U

V(U2U+U2)d3x=SUnUda \int_{\mathbb{V}}(U \nabla^2 U +|\nabla U|^2)d^3x = \oint_{\mathbb{S}} U \frac{\partial }{\partial n} U da

If U U is the solution of Laplace’s equation (2U=0) (\nabla^2 U = 0)

VU2d3x=SUnUda \int_{\mathbb{V}}|\nabla U|^2d^3x = \oint_{\mathbb{S}} U \frac{\partial }{\partial n} U da

Use Dirichlet B.C. (U=0 on S) (U=0 \text{ on } \mathbb{S})

VU2d3x=0U=0U=Φ2Φ1=0 \int_{\mathbb{V}} |\vec{\nabla}U|^2 d^3x = 0 \Rightarrow \vec{\nabla}U = 0 \Rightarrow U = \Phi_2-\Phi_1 = 0

Use Neumann B.C. (Un=0 on S) (\frac{\partial U}{\partial n}=0 \text{ on } \mathbb{S})

VU2d3x=constU=constU=Φ2Φ1=const \int_{\mathbb{V}} |\vec{\nabla}U|^2 d^3x = const \Rightarrow \vec{\nabla}U = const \Rightarrow U = \Phi_2-\Phi_1 = const

Exercise

xxn=nxxn2(xx) \vec{\nabla}|\vec{x}-\vec{x'}|^n = n|\vec{x}-\vec{x'}|^{n-2}(\vec{x}-\vec{x'})

solution

xxn=[xex+yey+zez][(xx)2+(yy)2+(zz)2]n2=[2(xx)ex+2(yy)ey+2(zz)ez][(xx)2+(yy)2+(zz)2]n21=nxxn2(xx) \begin{aligned} \vec{\nabla}|\vec{x}-\vec{x'}|^n &=\left[ \frac{\partial}{\partial x} \vec{e_x} + \frac{\partial}{\partial y} \vec{e_y} + \frac{\partial}{\partial z} \vec{e_z} \right] \left[ (x-x')^2 + (y-y')^2 + (z-z')^2 \right]^{\frac{n}{2}} \\ \displaystyle &= \left[ 2(x-x') \vec{e_x} + 2(y-y') \vec{e_y} + 2(z-z') \vec{e_z} \right] \left[ (x-x')^2 + (y-y')^2 + (z-z')^2 \right]^{\frac{n}{2}-1} \\ \displaystyle &= n|\vec{x}-\vec{x'}|^{n-2}(\vec{x}-\vec{x'}) \end{aligned}

Note : \vec{\nabla} act on x \vec{x} ; \vec{\nabla'} act on x \vec{x'}

xxn=xxn \vec{\nabla'}|\vec{x}-\vec{x'}|^n = - \vec{\nabla}|\vec{x}-\vec{x'}|^n

e.g. : n=1 n = -1

1xx=xxxx3(=err2) \vec{\nabla} \frac{1}{|\vec{x}-\vec{x'}|} = \frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} (=-\frac{\vec{e_r}}{r^2}) E=14πϵ0ρ(x)(xx)xx3d3x=14πϵ0ρ(x)xxd3x=Φ \Rightarrow \vec{E} = \frac{1}{4 \pi \epsilon_0} \int \frac{\rho (\vec{x'})(\vec{x}-\vec{x'})}{|\vec{x}-\vec{x'}|^3} d^3x' = \vec{\nabla} \frac{1}{4 \pi \epsilon_0} \int \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' = -\vec{\nabla}\Phi

# 1.10 Formal Solution of Electrostatic Boundary-Value Problem with Green Function

Green Function : a class of function satisfying

2G(x,x)=4πδ(xx) \nabla '^2 G(\vec{x},\vec{x'}) = 4 \pi \delta (\vec{x}-\vec{x'})

where

G(x,x)=1x,x+F(x,x) G(\vec{x},\vec{x'}) = \frac{1}{|\vec{x},\vec{x'}|} + F(\vec{x},\vec{x'}) 2F(x,x)=0satisfying Laplace equation \nabla'^2 F (\vec{x},\vec{x'}) = 0 \rightarrow \text{satisfying Laplace equation}

Let

{ψ=G(x,x)ϕ=Φ \left\{ \begin{array}{ll} \psi = G(\vec{x},\vec{x'})\\ \phi = \Phi \end{array} \right. V(Φ2G4πδ(xx)G2Φρ(x))d3x=S(ΦnGGnΦ)da \Rightarrow \int_{\mathbb{V}}(\Phi \overbrace{\nabla'^2 G}^{-4 \pi \delta(\vec{x}-\vec{x'})} - G \overbrace{\nabla'^2 \Phi}^{-\rho(\vec{x'})}) d^3x' = \oint_{\mathbb{S}}(\Phi \frac{\partial}{\partial n'}G-G\frac{\partial}{\partial n'}\Phi)da' Φ(x)=14πϵ0Vρ(x)G(x,x)d3x+14πS[G(x,x)Φ(x)nΦ(x)G(x,x)n]da \Rightarrow \Phi(\vec{x}) = \frac{1}{4 \pi \epsilon_0 }\int_{\mathbb{V}} \rho (\vec{x'}) G(\vec{x},\vec{x'}) d^3x' + \frac{1}{4 \pi} \oint_{\mathbb{S}}\left[ G(\vec{x},\vec{x'}) \frac{\partial \Phi (\vec{x'})}{\partial n'} - \Phi(\vec{x'}) \frac{\partial G (\vec{x},\vec{x'})}{\partial n'} \right] da'

Using the additional freedom F(x,x) F(\vec{x},\vec{x'}) in G(x,x) G(\vec{x},\vec{x'}) to obtain results with the specific B.C. ( Dirichlet or Neumann B.C. )

  • Dirichlet B.C. GD(x,x)=0 for x on S G_D(\vec{x},\vec{x'}) = 0 \text{ for } \vec{x'} \text{ on } \mathbb{S}
Φ(x)=14πϵ0Vρ(x)GD(x,x)d3x14πS[Φ(x)GD(x,x)n]da \Phi(\vec{x}) = \frac{1}{4 \pi \epsilon_0 }\int_{\mathbb{V}} \rho (\vec{x'}) G_D(\vec{x},\vec{x'}) d^3x' - \frac{1}{4 \pi} \oint_{\mathbb{S}}\left[ \Phi(\vec{x'}) \frac{\partial G_D (\vec{x},\vec{x'})}{\partial n'} \right] da'
  • Neumann B.C. GN(x,x)nda=4πAS for x on S\displaystyle \frac{\partial G_N(\vec{x},\vec{x'})}{\partial n'} da'= -\frac{4 \pi}{A_S} \text{ for } \vec{x'} \text{ on } \mathbb{S}
\because Gauss's theorem SGN(xx)nda=SGN(x,x)nda \oint_{\mathbb{S}} \frac{\partial G_N(\vec{x}-\vec{x'})}{\partial n'} da' = \oint_{\mathbb{S}} \vec{\nabla '} G_N (\vec{x},\vec{x'}) \cdot \vec{n'} da' =V4πδ(x,x)d3x=4π0 = \int_{-\mathbb{V}} -4 \pi \delta (\vec{x},\vec{x'}) d^3x' = -4 \pi \ne 0 Φ(x)=ΦS+14πϵ0Vρ(x)GN(x,x)d3x+14πSΦ(x)nGN(x,x)da \Phi(\vec{x}) = \langle \Phi \rangle_{\mathbb{S}} + \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{V}} \rho (\vec{x'}) G_N (\vec{x},\vec{x'}) d^3x' + \frac{1}{4 \pi} \oint_{\mathbb{S}}\frac{\partial \Phi(\vec{x'})}{\partial n'}G_N (\vec{x},\vec{x'})da'

# 1.11 Electrostatic Potential Energy and Energy Density, Capacitance

  • Potential Energy
    Work done on a point charge qi q_i ; from infinity (Φ()=0) (\Phi (\infty) = 0) to xi \vec{x_i} in a region of localized E \vec{E} field described by Φ \Phi
Wi=qiΦ(xi) \Rightarrow W_i = q_i \Phi(\vec{x_i})

Adding charges (q1,q2,...,qn) (q_1,q_2,...,q_n) to (x1,x2,...,xn) (\vec{x_1},\vec{x_2},...,\vec{x_n}) one by one

Potential experienced by the charge qi q_i :

Φ(xi)=14πϵ0j=1i1qjxixj \Phi (\vec{x_i}) = \frac{1}{4 \pi \epsilon_0} \sum_{j=1}^{i-1} \frac{q_j}{|\vec{x_i}-\vec{x_j}|}

total potential energy

W=14πϵ0i=1nj<iqiqjxixj=18πϵ0ijiqiqjxixj W= \frac{1}{4 \pi \epsilon_0} \sum_{i=1}^{n} \sum_{j<i} \frac{q_i q_j}{|\vec{x_i}-\vec{x_j}|}= \frac{1}{8 \pi \epsilon_0} \sum_{i} \sum_{j \ne i} \frac{q_i q_j}{|\vec{x_i}-\vec{x_j}|}

energy can be negative (due to forces acting between the charges)

generalize to continuous charge

W=18πϵ0ρ(x)ρ(x)xxd3xd3x=12ρ(x)Φ(x)d3x \Rightarrow W = \frac{1}{8 \pi \epsilon_0} \iint \frac{\rho(\vec{x})\rho(\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x \,d^3x' = \frac{1}{2} \rho (\vec{x}) \Phi (\vec{x}) d^3x

Alternatively , in terms of E \vec{E}

(EΦ)=(E)Φ+E(Φ) \because \vec{\nabla} \cdot (\vec{E} \Phi) = (\vec{\nabla}\cdot \vec{E}) \Phi + \vec{E} \cdot (\vec{\nabla}\Phi) W=ϵ0Φ2Φd3x=ϵ02{EΦd3x+(EΦ)d3x} \Rightarrow W = - \epsilon_0 \int \Phi \nabla^2 \Phi d^3x = \frac{\epsilon_0}{2}\left\{ -\int \vec{E} \cdot \vec{\nabla} \Phi d^3 x + \int \vec{\nabla} \cdot (\vec{E} \Phi) d^3x \right\} ϵ02VE2d3x+ϵ02SΦEnda=ϵ02all spaceE2d3x \frac{\epsilon_0}{2}\int_{\mathbb{V}}|\vec{E}|^2 d^3x +\frac{\epsilon_0}{2} \oint_{\mathbb{S}} \Phi \vec{E} \cdot \vec{n} \, da = \frac{\epsilon_0}{2} \int_{\text{all space}}|\vec{E}|^2 \, d^3x W=12ρ(x)Φ(x)d3x=ϵ02E2d3x=WEd3x \therefore W = \frac{1}{2} \int \rho (\vec{x}) \Phi (\vec{x}) \, d^3x = \frac{\epsilon_0}{2} \int |\vec{E}|^2 \, d^3x = \int W_E \, d^3x

Energy density of E \vec{E} : WE=ϵ02E2 W_E = \frac{\epsilon_0}{2} |\vec{E}|^2

  • Self-Energy Contribution to the Energy Density
    Derivation of the electric field energy from ρ(x) \rho (\vec{x}) :
    Consider building the system of ρ(x) \rho (\vec{x}) through the process
κρ(x)κΦ(x)κ=0+ρ(x)dκκρ(x)κΦ(x)κ=dκ+ρ(x)dκκρ(x)κΦ(x)κ=2dκ...ρ(x)Φ(x)κ=1 \underset{\textcolor{blue}{\kappa = 0}}{ \begin{aligned} \kappa \rho (\vec{x}) \\ \kappa \Phi (\vec{x}) \end{aligned}} \overset{+ \rho (\vec{x})d\kappa }{\longrightarrow} \underset{\textcolor{blue}{\kappa = d \kappa}}{ \begin{aligned} \kappa \rho (\vec{x}) \\ \kappa \Phi (\vec{x}) \end{aligned}} \overset{+ \rho (\vec{x})d\kappa }{\longrightarrow} \underset{\textcolor{blue}{\kappa = 2d \kappa}}{ \begin{aligned} \kappa \rho (\vec{x}) \\ \kappa \Phi (\vec{x}) \end{aligned}} \longrightarrow ...\longrightarrow \underset{\textcolor{blue}{\kappa = 1}}{ \begin{aligned} \rho (\vec{x}) \\ \Phi (\vec{x}) \end{aligned}} dW=VκΦ(x)ρ(x)dκd3x dW= \int_{\mathbb{V}} \kappa \Phi (\vec{x}) \rho (\vec{x}) d \kappa \, d^3x W=κ=0κ=1dW=Vκ=01κdκρ(x)Φ(x)d3x=12Φ(x)ρ(x)d3x \therefore W = \int_{\kappa = 0}^{\kappa = 1} dW = \int_{\mathbb{V}} \int _{\kappa = 0}^{1} \kappa \, d \kappa \rho (\vec{x}) \Phi (\vec{x}) d^3x = \frac{1}{2} \int \Phi (\vec{x}) \rho (\vec{x}) d^3x

Using Poisson Equation

ϵ02Φ(x)2Φ(x)d3x \Rightarrow - \frac{\epsilon_0}{2} \int \Phi(\vec{x}) \nabla^2 \Phi(\vec{x}) d^3x

Using Green’s first identity with ϕ=ψ=Φ \phi = \psi =\Phi

ϵ02V(Φ)(Φ)d3xϵ02SΦΦnda=0 , taking all space \Rightarrow \frac{\epsilon_0}{2} \int_{\mathbb{V}}(\vec{\nabla} \Phi)(\vec{\nabla} \Phi) d^3x \underbrace{-\frac{\epsilon_0}{2} \oint_{\mathbb{S}} \Phi \frac{\partial \Phi}{\partial n} da }_{=0 \text{ , taking all space}}
  • Capacitance
    A system of a conductors , each with potential Vi V_i ,Charge Qi Q_i
    By the principle of superposition ,
Vi=j=1nPijQjinversionQi=CijQj V_i = \sum_{j=1}^{n} P_{ij} Q_j \overset{\text{inversion}}{\Longrightarrow} Q_i = C_{ij} Q_j PijCij P_{ij} \leftrightarrow C_{ij} : geometric quantities Cii \\ C_{ii} : capacities / capacitances Cij(ij) \\ C_{ij} (i \ne j) : coefficients of induction / mutual cross capacitance
  • Electrostatic potential energy of the n-conductor system
Wi=12ρi(x)Φi(x)d3x=12QiVi \rightarrow W_i = \frac{1}{2} \int \rho_i (\vec{x}) \Phi_i (\vec{x}) d^3x = \frac{1}{2} Q_i V_i W=12i=1nQiVi=12i=1nj=1nCijViVj W = \frac{1}{2} \sum_{i=1}^{n} Q_i V_i = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} V_i V_j
  • Calculate force via change in the potential energy
    e.g. : force per unit area on the surface of a conductor with charge density σ(x) \sigma (\vec{x})
(E2E1)n=σϵ0 (\vec{E_2}-\vec{E_1}) \cdot \vec{n} = \frac{\sigma}{\epsilon_0}

immediately outside a conductor

E=σ(x)ϵ0n \vec{E} = \frac{\sigma(\vec{x})}{\epsilon_0} \vec{n}

ref: 古典電力學一 王喬萱教授 上課講義