# Chapter 1 Introduction to Electrostatics

# 1.5 Another Equation of Electrostatics and the Scalar Potential

Helmholt’s Theorem ( the fundamental theorem of rector calculus )
vector field : divergence + curl ( + boundary condition )

×E(x)=14πϵ0ρ(x)×(xxxx3)d3x=14πϵ0ρ(x)×(1xx)=0curl freeonly when Bt=0=0 \begin{align*} \displaystyle \vec{\nabla} \times \vec{E}(\vec{x}) &= \frac{1}{4\pi \epsilon_0}\int \rho (\vec{x'}) \vec{\nabla} \times \left(\frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} \right) d^3x' \\ &= \frac{1}{4\pi \epsilon_0}\int \rho (\vec{x'}) \underbrace {\vec{\nabla} \times \left( -\vec{\nabla} \frac{1}{|\vec{x}-\vec{x'}|} \right) }_{\textcolor{blue}{ \begin{array}{l} \textcolor{blue}{=0} \\ \textcolor{blue}{\text{curl free}} \\ \textcolor{blue}{\text{only when } \frac{\partial \vec{B}}{\partial t}=0} \end{array} }} =0 \end{align*} E(x)=14πϵ0ρ(x)xxd3x \vec{E}(\vec{x}) = - \frac{1}{4\pi \epsilon_0} \vec{\nabla} \int \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|}d^3x'

Scalar Potential or Electrostatic Potential Φ \Phi

E(x)=Φ(x) \vec{E}(\vec{x})=-\vec{\nabla}\Phi(\vec{x}) Φ(x)=14πϵ0ρ(x)xxd3xall charges in the universe \underset{\textcolor{red}{\text{all charges in the universe}}} {\Phi(\vec{x})=\frac{1}{4 \pi \epsilon_0}\int \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|}d^3x }

More generally

xxn=nxxn2(xx) \vec{\nabla}|\vec{x}-\vec{x'}|^n = n|\vec{x}-\vec{x'}|^{n-2}(\vec{x}-{x'}) ×E=0 \therefore \vec{\nabla} \times \vec{E}=0

only depends on the “central force” nature of Coulomb’s law does not require 1r2 \frac{1}{r^2}
Physical Interpretation of Φ(x) \Phi(x)
Work done by an external force to “counteract” the E \vec{E} field

WAB=ABFdl=qABEdl=qABΦdl=qABdΦ=q(ΦBΦA)independent of the path \begin{align*} W^{A \to B}&= \int_A^B \vec{F} \cdot d \vec{l} = -q \int_A^B \vec{E} \cdot d \vec{l} \\ &= q \int_A^B \Phi \cdot d \vec{l} = q \int_A^B d \Phi \\ &=q (\Phi_B-\Phi_A) \quad \textcolor{blue}{\text{independent of the path}} \end{align*}

For close loop

CEdl=0 \oint_C \vec{E} \cdot d \vec{l} = 0

Stock’s Theorem (Curl theorem)

CAdl=S(×Anda) \oint_C \vec{A} \cdot d \vec{l} = \int_S (\vec{\nabla} \times \vec{A} \cdot \vec{n} \, da)

# 1.6 Surface Distributions of Charges & Dipoles & Discontinuities in the Electric Field and Potential

Surface charge density

σ(x)=dqda \sigma (\vec{x}) = \frac{dq}{da}

Tangential component of E \vec{E}

CEdl=0 \oint_C \vec{E} \cdot d \vec{l} = 0 (E2E1)e=0for static case \Rightarrow (\vec{E_2}-\vec{E_1}) \cdot \vec{e_\parallel} = 0 \quad \text{for static case}

Normal component of E \vec{E} :discontinuous across σ(x) \sigma(\vec{x})

PEnda=qϵ0=Aσ(x)ϵ0da \oint_{\mathbb{P}} \vec{E} \cdot \vec{n} \, da = \frac{q}{\epsilon_0} = \int_{\mathbb{A}} \frac{\sigma(\vec{x})}{\epsilon_0} \, da (E2E1)n=σ(x)ϵ00if σ(x)=0 \Rightarrow (\vec{E_2}-\vec{E_1}) \cdot \vec{n} = \frac{\sigma(\vec{x})}{\epsilon_0} \ne 0 \quad \text{if } \sigma(\vec{x})= 0

c.f.

Φ(x)=14πϵ0Vρ(x)xxd3x=14πϵ0Sρ(x)xxda \Phi(\vec{x}) = \frac{1}{4\pi \epsilon_0}\int_V \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' = \frac{1}{4\pi \epsilon_0} \int_{\mathbb{S}}\frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} da' \Rightarrow continuous for surface / volume charge

( also : E \vec{E} discontinuous across σ(x) \sigma(\vec{x}) but bounded )

e.g. uniform spherical shell of charges

σ=Q4πa2 \sigma = \frac{Q}{4\pi a^2} E=q4πϵ0err2 \vec{E}= \frac{q}{4 \pi \epsilon_0} \frac{\vec{e_r}}{r^2}

Potential :

Φ(ra)=Q4πϵ0a \Phi (r \leq a) = \frac{Q}{4 \pi \epsilon_0 a} Φ(r>a)=Q4πϵ0r \Phi (r > a) = \frac{Q}{4 \pi \epsilon_0 r}

Dipole Layer

Method 1

Φ(x)=14πϵ0Sσ(x)xxda+14πϵ0Sσ(x)σ(x)xx+nd(x)xdada \Phi(\vec{x})= \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}} \frac{\sigma(\vec{x})}{|\vec{x}-\vec{x'}|} \, da' + \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}'} \frac{\overbrace{-\sigma (\vec{x'})}^{\sigma (\vec{x''})}}{\vec{x} \underbrace{-\vec{x'}+n \, d(\vec{x'})}_{-\vec{x''}}}\, \overbrace{da'}^{da''}

Taylor expansion

1xx+ndxx>>d1xx+nd(1xx)(1xx)+Θ(d2) \frac{1}{|\vec{x}-\vec{x'}+\vec{n}d|} \underset{|\vec{x}-\vec{x'}|>>d}{\sim}\frac{1}{|\vec{x}-\vec{x'}|}+ \vec{n} d \cdot \underbrace{\vec{\nabla}\left( \frac{1}{|\vec{x}-\vec{x'}|}\right)}_{-\vec{\nabla}(\frac{1}{|\vec{x}-\vec{x'}|}) } +\Theta(d^2) Φ(x)=14πϵ0Sσ(x)d(x)n(1xx)da \therefore \Phi(\vec{x}) = \frac{1}{4 \pi \epsilon_0 }\int_{\mathbb{S}} \sigma(\vec{x'}) d (\vec{x'}) \vec{n} \cdot \vec{\nabla '}\left( \frac{1}{|\vec{x}-\vec{x'}|} \right) \, da'

Dipole Layer Strength

limd0σ(x)d(x)=D(x) \lim_{d \to 0} \sigma(\vec{x'})d(\vec{x'})= D(\vec{x'}) n(1xx)da=n(xxxx3)da=cosθr2da=dΩ \vec{n} \cdot \vec{\nabla '}\left( \frac{1}{|\vec{x}-\vec{x'}|} \right) \, da' = \vec{n} \cdot \left( \frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} \right)\, da' = - \frac{\cos{\theta}}{r^2} da' =-d \Omega Φ(x)=14πϵ0SD(x)dΩ \Rightarrow \Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}} D (\vec{x}) \, d \Omega

Method 2

p\vec{p} : dipole moment Φ(x)=14πϵ0(qr+qr)14πϵ0qdnp(xx)xx3 \Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0}\left( \frac{q}{r_+}-\frac{q}{r_-} \right) \approxeq \frac{1}{4\pi \epsilon_0}\frac{ \overbrace{q\,d\vec{n}}^{\textcolor{blue}{\vec{p}}} \cdot (\vec{x}-\vec{x'}) }{|\vec{x}-\vec{x'}|^3} Φ(x)=14πϵ0daσ(x)d(x)nxxxx3=14πϵ0SD(x)dΩ \begin{align*} \Phi(\vec{x})& = \frac{1}{4 \pi \epsilon_0} \int da' \sigma (\vec{x'}) d (\vec{x'}) \vec{n} \cdot \frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} \\ &= - \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S} } D(\vec{x'})d \Omega \end{align*}

Discontinuity of Φ \Phi across the dipole layer
observation point : infinitesimally close to the dipole layer

σ \sigma uniform sheet of charge \rightarrow uniform flat disc with constant D=σd D= \sigma d Φ2=D2ϵ0Φ1=D2ϵ0 \Phi_2= \frac{D}{2\epsilon_0} \quad \quad \Phi_1= -\frac{D}{2\epsilon_0} Φ2Φ1=Dϵ0 \Rightarrow \Phi_2- \Phi_1 = \frac{D}{\epsilon_0}

Electric Field

2EA=σAϵ0 2EA = \frac{\sigma A}{\epsilon_0} Φ2Φ1=Edl=σdϵ0 \Phi_2 - \Phi_1 = - \int \vec{E} \cdot d \vec{l} = \frac{\sigma d}{\epsilon_0}

# 1.7 Poisson and Laplace Equations

{E=ρϵ0×E=0E=Φ \left\{ \begin{array}{ll} \displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\ \vec{\nabla} \times \vec{E} = 0 \quad \Leftrightarrow \quad \vec{E} = - \vec{\nabla} \Phi \end{array} \right.

Poisson Equation

(Φ)=2Φ=ρϵ0 \Rightarrow \vec{\nabla} \cdot (\vec{\nabla}\Phi) = \boxed{\nabla^2\Phi = - \frac{\rho }{\epsilon_0}}

Laplace Eqution
Special case ( ρ=0 \rho = 0 )

2Φ=0 \boxed{\nabla^2\Phi = 0}

Poisson Equation ( differential form ) + Boundary Condition \rightarrow One can solve for Φ \Phi and thus E \vec{E}

Φ=14πϵ0ρ(x)d3xxx \Phi = \frac{1}{4\pi \epsilon_0 }\int \frac{\rho(\vec{x'})d^3x'}{|\vec{x}-\vec{x'}|}

which satisfies Laplace Eqution

2Φ=0 \nabla^2\Phi = 0

start with a point charge q q at x \vec{x'}

Φ=14πϵ0qxx \Phi = \frac{1}{4\pi \epsilon_0 }\int \frac{q}{|\vec{x}-\vec{x'}|} ρ(x)=qδ(xx) \rho(\vec{x}) = q \delta(\vec{x}-\vec{x'}) 2Φ(x)=q4πϵ021xx=?qϵ0δ(xx) \nabla^2\Phi(\vec{x}) = \frac{q}{4\pi \epsilon_0 } \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} \overset{?}{=} -\frac{q}{\epsilon_0}\delta(\vec{x}-\vec{x'})

prove:

21xx=4πδ(xx) \boxed{\nabla^2 \frac{1}{|\vec{x}-\vec{x'}|}= -4 \pi \delta (\vec{x}-\vec{x'})}

The above statement is equivalent to proving

{21xx=0if xx21xxd3x=4πδ(xx)d3x=4π \left\{ \begin{array}{ll} \displaystyle \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|}=0 \quad \text{if } \vec{x} \ne \vec{x'} \\ \displaystyle \int \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} d^3x = - 4 \pi \int \delta (\vec{x}-\vec{x'}) d^3x = - 4 \pi \end{array} \right.

Switch to spherical coordinate with rxx r \equiv |\vec{x}-\vec{x'}|

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sinθ2ϕ2 \nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r}\left( r^2\frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin{\theta}} \frac{\partial}{\partial \theta}\left( \sin{\theta}\frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin{\theta}}\frac{\partial^2}{\partial \phi^2} 21xx=21r=1r2r(r2r2)=0if r0 \Rightarrow \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} = \nabla^2 \frac{1}{r} = \frac{1}{r^2} \frac{\partial}{\partial r} \left( - \frac{r^2}{r^2} \right) = 0 \quad \text{if } r \ne 0 V2(1r)d3x=V(1r)d3xdivergence theoremS(1r)erda \int_{\mathbb{V}} \nabla^2 \left( \frac{1}{r} \right) d^3x = \int_{\mathbb{V}} \vec{\nabla} \cdot \left( \vec{\nabla} \frac{1}{r} \right) d^3x \overset{\text{divergence theorem}}{\Longrightarrow} \oint_{\mathbb{S}}\left( \vec{\nabla} \frac{1}{r} \right) \cdot \vec{e_r} \, da S1r2er1rerr2sinθdθdϕ=4π \oint_{\mathbb{S}} \overbrace{- \frac{1}{r^2} \vec{e_r}}^{\vec{\nabla} \frac{1}{r}} \cdot \vec{e_r} \overbrace{r^2 \sin{\theta} \, d \theta \, d \phi} = -4 \pi

where r0 r \ne 0 on the surface

Generalize to continuous charge distribution

214πϵ0Φρ(x)xxd3x=4π4πϵ0ρ(x)δ(xx)d3x=ρ(x)ϵ0 \nabla^2 \overbrace{\frac{1}{4\pi \epsilon_0}}^{\Phi} \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' = - \frac{4 \pi}{4 \pi \epsilon_0} \int \rho (\vec{x'}) \delta(\vec{x}-\vec{x'}) d^3x = - \frac{\rho (\vec{x'})}{\epsilon_0}

# 1.8 Green’s Theorem

George Green “An Essay on the Application of Mathematical
Analysis to the Theories of Electricity and Magnetism” (1828)

\rightarrow Mathematical tool to handle boundary conditions

Recall divergence throrem:

VAd3x=SAnda \int_{\mathbb{V}} \vec{\nabla} \cdot \vec{A} \,d^3x = \oint_{\mathbb{S}} \vec{A} \cdot \vec{n} \, da

Let A=ϕψ \vec{A} = \phi \vec{\nabla} \psi

Left side : A=(ϕψ)ϕ2ψ+ϕψ \text{Left side : } \vec{\nabla} \cdot \vec{A} = \vec{\nabla} \cdot (\phi \vec{\nabla} \psi ) \phi \nabla^2 \psi + \vec{\nabla}\phi \cdot \vec{\nabla}\psi Right side : An=ϕψn=ϕnψ \text{Right side : } \vec{A} \cdot \vec{n} = \phi \vec{\nabla} \psi \cdot n =\phi \frac{\partial}{\partial n }\psi

Green’s first identity

V(ϕ2ψ+ϕψ)d3x=Sϕnψda1 \int_{\mathbb{V}} (\phi \nabla^2 \psi + \vec{\nabla \phi} \cdot \vec{\nabla} {\psi} ) \, d^3x = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n} \psi \, da \quad \text{\textcircled{1}}

Interchange ψϕ \psi \leftrightarrow \phi

V(ψ2ϕ+ψϕ)d3x=Sψnϕda2 \int_{\mathbb{V}} (\psi \nabla^2 \phi + \vec{\nabla \psi} \cdot \vec{\nabla} {\phi} ) \, d^3x = \oint_{\mathbb{S}} \psi \frac{\partial}{\partial n} \phi \, da \quad \text{\textcircled{2}} 1 - 2 \text{\textcircled{1} - \textcircled{2}}

Green’s Second identity / Green’s theorem

V(ϕ2ψψ2ϕ)d3x=Sϕnψψnϕda3 \int_{\mathbb{V}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi ) \, d^3x = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n} \psi - \psi \frac{\partial}{\partial n} \phi \, da \quad \text{\textcircled{3}}

switch to the prime coordinate xx \vec{x} \rightarrow \vec{x'}

V(ϕ2ψψ2ϕ)d3x=Sϕnψψnϕda \int_{\mathbb{V}} (\phi {\nabla'}^2 \psi - \psi {\nabla'}^2 \phi ) \, d^3x' = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n'} \psi - \psi \frac{\partial}{\partial n'} \phi \, da'

Let ψ(x)=1xx \displaystyle \psi (\vec{x'}) = \frac{1}{|\vec{x}-\vec{x'}|}

21xx=21xx=4πδ(xx) {\nabla'}^2\frac{1}{|\vec{x}-\vec{x'}|} = {\nabla}^2\frac{1}{|\vec{x}-\vec{x'}|} = -4 \pi \delta (\vec{x}-\vec{x'})

Let ϕ(x)=Φ(x) \phi (\vec{x'}) = \Phi (\vec{x'})

2Φ(x)=ρ(x)ϵ0 {\nabla'}^2 \Phi (\vec{x'}) = - \frac{\rho (\vec{x'})}{\epsilon_0} 3V{Φ(x)[4πδ(xx)]+ρ(x)ϵ0xx}d3x \text{\textcircled{3}} \rightarrow \int_{\mathbb{V}}\left\{ \Phi (\vec{x'}) [ -4 \pi \delta( \vec{x}-\vec{x'} ) ] + \frac{\rho({\vec{x'}})}{ \epsilon_0 |\vec{x}-\vec{x'}|} \right\} \, d^3x' =S(Φ(x)n1xx1xxnΦ(x))da = \oint_{\mathbb{S}} \left( \Phi (\vec{x'} ) \frac{\partial}{\partial n'}\frac{1}{|\vec{x}-\vec{x'}|}-\frac{1}{|\vec{x}-\vec{x'}|}\frac{\partial}{\partial n'}\Phi (\vec{x'} ) \right) \, da'

If x \vec{x} lies within V \mathbb{V} :

VΦ(x)δ(xx)d3x=Φ(x) \int_{\mathbb{V}} \Phi (\vec{x'} )\delta(\vec{x}-\vec{x'}) \, d^3x' = \Phi (\vec{x})

Integral Statement of Φ(x) \Phi (\vec{x})

Φ(x)=14πϵ0Vρ(x)xxd3x+14πS[1xxΦnΦn1xx]da0 for S= infinite space  \therefore \Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{V}} \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' + \overbrace{\frac{1}{4 \pi} \oint_{\mathbb{S}} \left[ \frac{1}{|\vec{x}-\vec{x'}|}\frac{\partial \Phi}{\partial n'}-\Phi \frac{\partial}{\partial n'}\frac{1}{|\vec{x}-\vec{x'}|} \right]\, da' }^{ \rightarrow 0 \text{ for } \mathbb{S} = \text{ infinite space }}

not a solution “over specification”

ref: 古典電力學一 王喬萱教授 上課講義