# Chapter 1 Introduction to Electrostatics
# 1.5 Another Equation of Electrostatics and the Scalar Potential
Helmholt’s Theorem ( the fundamental theorem of rector calculus )
vector field : divergence + curl ( + boundary condition )
∇ ⃗ × E ⃗ ( x ⃗ ) = 1 4 π ϵ 0 ∫ ρ ( x ′ ⃗ ) ∇ ⃗ × ( x ⃗ − x ′ ⃗ ∣ x ⃗ − x ′ ⃗ ∣ 3 ) d 3 x ′ = 1 4 π ϵ 0 ∫ ρ ( x ′ ⃗ ) ∇ ⃗ × ( − ∇ ⃗ 1 ∣ x ⃗ − x ′ ⃗ ∣ ) ⏟ = 0 curl free only when ∂ B ⃗ ∂ t = 0 = 0
\begin{align*}
\displaystyle
\vec{\nabla} \times \vec{E}(\vec{x}) &= \frac{1}{4\pi \epsilon_0}\int \rho (\vec{x'}) \vec{\nabla} \times \left(\frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} \right) d^3x' \\
&= \frac{1}{4\pi \epsilon_0}\int \rho (\vec{x'})
\underbrace
{\vec{\nabla} \times \left( -\vec{\nabla} \frac{1}{|\vec{x}-\vec{x'}|} \right)
}_{\textcolor{blue}{
\begin{array}{l}
\textcolor{blue}{=0} \\
\textcolor{blue}{\text{curl free}} \\
\textcolor{blue}{\text{only when } \frac{\partial \vec{B}}{\partial t}=0}
\end{array}
}}
=0
\end{align*}
∇ × E ( x ) = 4 π ϵ 0 1 ∫ ρ ( x ′ ) ∇ × ( ∣ x − x ′ ∣ 3 x − x ′ ) d 3 x ′ = 4 π ϵ 0 1 ∫ ρ ( x ′ ) = 0 curl free only when ∂ t ∂ B = 0 ∇ × ( − ∇ ∣ x − x ′ ∣ 1 ) = 0
E ⃗ ( x ⃗ ) = − 1 4 π ϵ 0 ∇ ⃗ ∫ ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d 3 x ′
\vec{E}(\vec{x}) = - \frac{1}{4\pi \epsilon_0} \vec{\nabla} \int \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|}d^3x'
E ( x ) = − 4 π ϵ 0 1 ∇ ∫ ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x ′
Scalar Potential or Electrostatic Potential Φ \Phi Φ
E ⃗ ( x ⃗ ) = − ∇ ⃗ Φ ( x ⃗ )
\vec{E}(\vec{x})=-\vec{\nabla}\Phi(\vec{x})
E ( x ) = − ∇ Φ ( x )
Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d 3 x all charges in the universe
\underset{\textcolor{red}{\text{all charges in the universe}}}
{\Phi(\vec{x})=\frac{1}{4 \pi \epsilon_0}\int \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|}d^3x
}
all charges in the universe Φ ( x ) = 4 π ϵ 0 1 ∫ ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x
More generally
∇ ⃗ ∣ x ⃗ − x ′ ⃗ ∣ n = n ∣ x ⃗ − x ′ ⃗ ∣ n − 2 ( x ⃗ − x ′ )
\vec{\nabla}|\vec{x}-\vec{x'}|^n = n|\vec{x}-\vec{x'}|^{n-2}(\vec{x}-{x'})
∇ ∣ x − x ′ ∣ n = n ∣ x − x ′ ∣ n − 2 ( x − x ′ )
∴ ∇ ⃗ × E ⃗ = 0
\therefore \vec{\nabla} \times \vec{E}=0
∴ ∇ × E = 0
only depends on the “central force” nature of Coulomb’s law does not require 1 r 2 \frac{1}{r^2} r 2 1
Physical Interpretation of Φ ( x ) \Phi(x) Φ ( x )
Work done by an external force to “counteract” the E ⃗ \vec{E} E field
W A → B = ∫ A B F ⃗ ⋅ d l ⃗ = − q ∫ A B E ⃗ ⋅ d l ⃗ = q ∫ A B Φ ⋅ d l ⃗ = q ∫ A B d Φ = q ( Φ B − Φ A ) independent of the path
\begin{align*}
W^{A \to B}&= \int_A^B \vec{F} \cdot d \vec{l} = -q \int_A^B \vec{E} \cdot d \vec{l} \\
&= q \int_A^B \Phi \cdot d \vec{l} = q \int_A^B d \Phi \\
&=q (\Phi_B-\Phi_A) \quad \textcolor{blue}{\text{independent of the path}}
\end{align*}
W A → B = ∫ A B F ⋅ d l = − q ∫ A B E ⋅ d l = q ∫ A B Φ ⋅ d l = q ∫ A B d Φ = q ( Φ B − Φ A ) independent of the path
For close loop
∮ C E ⃗ ⋅ d l ⃗ = 0
\oint_C \vec{E} \cdot d \vec{l} = 0
∮ C E ⋅ d l = 0
Stock’s Theorem (Curl theorem)
∮ C A ⃗ ⋅ d l ⃗ = ∫ S ( ∇ ⃗ × A ⃗ ⋅ n ⃗ d a )
\oint_C \vec{A} \cdot d \vec{l} = \int_S (\vec{\nabla} \times \vec{A} \cdot \vec{n} \, da)
∮ C A ⋅ d l = ∫ S ( ∇ × A ⋅ n d a )
# 1.6 Surface Distributions of Charges & Dipoles & Discontinuities in the Electric Field and Potential
Surface charge density
σ ( x ⃗ ) = d q d a
\sigma (\vec{x}) = \frac{dq}{da}
σ ( x ) = d a d q
Tangential component of E ⃗ \vec{E} E
∮ C E ⃗ ⋅ d l ⃗ = 0
\oint_C \vec{E} \cdot d \vec{l} = 0
∮ C E ⋅ d l = 0
⇒ ( E 2 ⃗ − E 1 ⃗ ) ⋅ e ∥ ⃗ = 0 for static case
\Rightarrow (\vec{E_2}-\vec{E_1}) \cdot \vec{e_\parallel} = 0 \quad
\text{for static case}
⇒ ( E 2 − E 1 ) ⋅ e ∥ = 0 for static case
Normal component of E ⃗ \vec{E} E :discontinuous across σ ( x ⃗ ) \sigma(\vec{x}) σ ( x )
∮ P E ⃗ ⋅ n ⃗ d a = q ϵ 0 = ∫ A σ ( x ⃗ ) ϵ 0 d a
\oint_{\mathbb{P}} \vec{E} \cdot \vec{n} \, da = \frac{q}{\epsilon_0} = \int_{\mathbb{A}} \frac{\sigma(\vec{x})}{\epsilon_0} \, da
∮ P E ⋅ n d a = ϵ 0 q = ∫ A ϵ 0 σ ( x ) d a
⇒ ( E 2 ⃗ − E 1 ⃗ ) ⋅ n ⃗ = σ ( x ⃗ ) ϵ 0 ≠ 0 if σ ( x ⃗ ) = 0
\Rightarrow (\vec{E_2}-\vec{E_1}) \cdot \vec{n} = \frac{\sigma(\vec{x})}{\epsilon_0} \ne 0 \quad \text{if } \sigma(\vec{x})= 0
⇒ ( E 2 − E 1 ) ⋅ n = ϵ 0 σ ( x ) = 0 if σ ( x ) = 0
c.f.
Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ V ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d 3 x ′ = 1 4 π ϵ 0 ∫ S ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d a ′
\Phi(\vec{x}) = \frac{1}{4\pi \epsilon_0}\int_V \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' =
\frac{1}{4\pi \epsilon_0} \int_{\mathbb{S}}\frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} da'
Φ ( x ) = 4 π ϵ 0 1 ∫ V ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x ′ = 4 π ϵ 0 1 ∫ S ∣ x − x ′ ∣ ρ ( x ′ ) d a ′
⇒ \Rightarrow ⇒ continuous for surface / volume charge
( also : E ⃗ \vec{E} E discontinuous across σ ( x ⃗ ) \sigma(\vec{x}) σ ( x ) but bounded )
e.g. uniform spherical shell of charges
σ = Q 4 π a 2
\sigma = \frac{Q}{4\pi a^2}
σ = 4 π a 2 Q
E ⃗ = q 4 π ϵ 0 e r ⃗ r 2
\vec{E}= \frac{q}{4 \pi \epsilon_0} \frac{\vec{e_r}}{r^2}
E = 4 π ϵ 0 q r 2 e r
Potential :
Φ ( r ≤ a ) = Q 4 π ϵ 0 a
\Phi (r \leq a) = \frac{Q}{4 \pi \epsilon_0 a}
Φ ( r ≤ a ) = 4 π ϵ 0 a Q
Φ ( r > a ) = Q 4 π ϵ 0 r
\Phi (r > a) = \frac{Q}{4 \pi \epsilon_0 r}
Φ ( r > a ) = 4 π ϵ 0 r Q
Dipole Layer
Method 1
Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ S σ ( x ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d a ′ + 1 4 π ϵ 0 ∫ S ′ − σ ( x ′ ⃗ ) ⏞ σ ( x ′ ′ ⃗ ) x ⃗ − x ′ ⃗ + n d ( x ′ ⃗ ) ⏟ − x ′ ′ ⃗ d a ′ ⏞ d a ′ ′
\Phi(\vec{x})= \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}} \frac{\sigma(\vec{x})}{|\vec{x}-\vec{x'}|} \, da' +
\frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}'} \frac{\overbrace{-\sigma (\vec{x'})}^{\sigma (\vec{x''})}}{\vec{x} \underbrace{-\vec{x'}+n \, d(\vec{x'})}_{-\vec{x''}}}\, \overbrace{da'}^{da''}
Φ ( x ) = 4 π ϵ 0 1 ∫ S ∣ x − x ′ ∣ σ ( x ) d a ′ + 4 π ϵ 0 1 ∫ S ′ x − x ′′ − x ′ + n d ( x ′ ) − σ ( x ′ ) σ ( x ′′ ) d a ′ d a ′′
Taylor expansion
1 ∣ x ⃗ − x ′ ⃗ + n ⃗ d ∣ ∼ ∣ x ⃗ − x ′ ⃗ ∣ > > d 1 ∣ x ⃗ − x ′ ⃗ ∣ + n ⃗ d ⋅ ∇ ⃗ ( 1 ∣ x ⃗ − x ′ ⃗ ∣ ) ⏟ − ∇ ⃗ ( 1 ∣ x ⃗ − x ′ ⃗ ∣ ) + Θ ( d 2 )
\frac{1}{|\vec{x}-\vec{x'}+\vec{n}d|} \underset{|\vec{x}-\vec{x'}|>>d}{\sim}\frac{1}{|\vec{x}-\vec{x'}|}+ \vec{n} d \cdot \underbrace{\vec{\nabla}\left(
\frac{1}{|\vec{x}-\vec{x'}|}\right)}_{-\vec{\nabla}(\frac{1}{|\vec{x}-\vec{x'}|})
}
+\Theta(d^2)
∣ x − x ′ + n d ∣ 1 ∣ x − x ′ ∣ >> d ∼ ∣ x − x ′ ∣ 1 + n d ⋅ − ∇ ( ∣ x − x ′ ∣ 1 ) ∇ ( ∣ x − x ′ ∣ 1 ) + Θ ( d 2 )
∴ Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ S σ ( x ′ ⃗ ) d ( x ′ ⃗ ) n ⃗ ⋅ ∇ ′ ⃗ ( 1 ∣ x ⃗ − x ′ ⃗ ∣ ) d a ′
\therefore \Phi(\vec{x}) = \frac{1}{4 \pi \epsilon_0 }\int_{\mathbb{S}} \sigma(\vec{x'}) d (\vec{x'}) \vec{n} \cdot \vec{\nabla '}\left(
\frac{1}{|\vec{x}-\vec{x'}|}
\right) \, da'
∴ Φ ( x ) = 4 π ϵ 0 1 ∫ S σ ( x ′ ) d ( x ′ ) n ⋅ ∇ ′ ( ∣ x − x ′ ∣ 1 ) d a ′
Dipole Layer Strength
lim d → 0 σ ( x ′ ⃗ ) d ( x ′ ⃗ ) = D ( x ′ ⃗ )
\lim_{d \to 0} \sigma(\vec{x'})d(\vec{x'})= D(\vec{x'})
d → 0 lim σ ( x ′ ) d ( x ′ ) = D ( x ′ )
n ⃗ ⋅ ∇ ′ ⃗ ( 1 ∣ x ⃗ − x ′ ⃗ ∣ ) d a ′ = n ⃗ ⋅ ( x ⃗ − x ′ ⃗ ∣ x ⃗ − x ′ ⃗ ∣ 3 ) d a ′ = − cos θ r 2 d a ′ = − d Ω
\vec{n} \cdot \vec{\nabla '}\left(
\frac{1}{|\vec{x}-\vec{x'}|}
\right) \, da' = \vec{n} \cdot
\left(
\frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3}
\right)\, da' = - \frac{\cos{\theta}}{r^2} da'
=-d \Omega
n ⋅ ∇ ′ ( ∣ x − x ′ ∣ 1 ) d a ′ = n ⋅ ( ∣ x − x ′ ∣ 3 x − x ′ ) d a ′ = − r 2 cos θ d a ′ = − d Ω
⇒ Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ S D ( x ⃗ ) d Ω
\Rightarrow \Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S}} D (\vec{x}) \, d \Omega
⇒ Φ ( x ) = 4 π ϵ 0 1 ∫ S D ( x ) d Ω
Method 2
p ⃗ \vec{p} p : dipole moment
Φ ( x ⃗ ) = 1 4 π ϵ 0 ( q r + − q r − ) ≊ 1 4 π ϵ 0 q d n ⃗ ⏞ p ⃗ ⋅ ( x ⃗ − x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ 3
\Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0}\left(
\frac{q}{r_+}-\frac{q}{r_-}
\right) \approxeq \frac{1}{4\pi \epsilon_0}\frac{
\overbrace{q\,d\vec{n}}^{\textcolor{blue}{\vec{p}}} \cdot (\vec{x}-\vec{x'})
}{|\vec{x}-\vec{x'}|^3}
Φ ( x ) = 4 π ϵ 0 1 ( r + q − r − q ) ≊ 4 π ϵ 0 1 ∣ x − x ′ ∣ 3 q d n p ⋅ ( x − x ′ )
Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ d a ′ σ ( x ′ ⃗ ) d ( x ′ ⃗ ) n ⃗ ⋅ x ⃗ − x ′ ⃗ ∣ x ⃗ − x ′ ⃗ ∣ 3 = − 1 4 π ϵ 0 ∫ S D ( x ′ ⃗ ) d Ω
\begin{align*}
\Phi(\vec{x})& = \frac{1}{4 \pi \epsilon_0} \int da' \sigma (\vec{x'}) d (\vec{x'}) \vec{n} \cdot \frac{\vec{x}-\vec{x'}}{|\vec{x}-\vec{x'}|^3} \\
&= - \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{S} } D(\vec{x'})d \Omega
\end{align*}
Φ ( x ) = 4 π ϵ 0 1 ∫ d a ′ σ ( x ′ ) d ( x ′ ) n ⋅ ∣ x − x ′ ∣ 3 x − x ′ = − 4 π ϵ 0 1 ∫ S D ( x ′ ) d Ω
Discontinuity of Φ \Phi Φ across the dipole layer
observation point : infinitesimally close to the dipole layer
σ \sigma σ uniform sheet of charge
→ \rightarrow → uniform flat disc with constant
D = σ d D= \sigma d D = σ d
Φ 2 = D 2 ϵ 0 Φ 1 = − D 2 ϵ 0
\Phi_2= \frac{D}{2\epsilon_0} \quad \quad \Phi_1= -\frac{D}{2\epsilon_0}
Φ 2 = 2 ϵ 0 D Φ 1 = − 2 ϵ 0 D
⇒ Φ 2 − Φ 1 = D ϵ 0
\Rightarrow \Phi_2- \Phi_1 = \frac{D}{\epsilon_0}
⇒ Φ 2 − Φ 1 = ϵ 0 D
Electric Field
2 E A = σ A ϵ 0
2EA = \frac{\sigma A}{\epsilon_0}
2 E A = ϵ 0 σ A
Φ 2 − Φ 1 = − ∫ E ⃗ ⋅ d l ⃗ = σ d ϵ 0
\Phi_2 - \Phi_1 = - \int \vec{E} \cdot d \vec{l} = \frac{\sigma d}{\epsilon_0}
Φ 2 − Φ 1 = − ∫ E ⋅ d l = ϵ 0 σ d
# 1.7 Poisson and Laplace Equations
{ ∇ ⃗ ⋅ E ⃗ = ρ ϵ 0 ∇ ⃗ × E ⃗ = 0 ⇔ E ⃗ = − ∇ ⃗ Φ
\left\{
\begin{array}{ll}
\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\
\vec{\nabla} \times \vec{E} = 0 \quad \Leftrightarrow \quad \vec{E} = - \vec{\nabla} \Phi
\end{array}
\right.
{ ∇ ⋅ E = ϵ 0 ρ ∇ × E = 0 ⇔ E = − ∇ Φ
Poisson Equation
⇒ ∇ ⃗ ⋅ ( ∇ ⃗ Φ ) = ∇ 2 Φ = − ρ ϵ 0
\Rightarrow \vec{\nabla} \cdot (\vec{\nabla}\Phi) = \boxed{\nabla^2\Phi = - \frac{\rho }{\epsilon_0}}
⇒ ∇ ⋅ ( ∇ Φ ) = ∇ 2 Φ = − ϵ 0 ρ
Laplace Eqution
Special case ( ρ = 0 \rho = 0 ρ = 0 )
∇ 2 Φ = 0
\boxed{\nabla^2\Phi = 0}
∇ 2 Φ = 0
Poisson Equation ( differential form ) + Boundary Condition → \rightarrow → One can solve for Φ \Phi Φ and thus E ⃗ \vec{E} E
Φ = 1 4 π ϵ 0 ∫ ρ ( x ′ ⃗ ) d 3 x ′ ∣ x ⃗ − x ′ ⃗ ∣
\Phi = \frac{1}{4\pi \epsilon_0 }\int \frac{\rho(\vec{x'})d^3x'}{|\vec{x}-\vec{x'}|}
Φ = 4 π ϵ 0 1 ∫ ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x ′
which satisfies Laplace Eqution
∇ 2 Φ = 0
\nabla^2\Phi = 0
∇ 2 Φ = 0
start with a point charge q q q at x ′ ⃗ \vec{x'} x ′
Φ = 1 4 π ϵ 0 ∫ q ∣ x ⃗ − x ′ ⃗ ∣
\Phi = \frac{1}{4\pi \epsilon_0 }\int \frac{q}{|\vec{x}-\vec{x'}|}
Φ = 4 π ϵ 0 1 ∫ ∣ x − x ′ ∣ q
ρ ( x ⃗ ) = q δ ( x ⃗ − x ′ ⃗ )
\rho(\vec{x}) = q \delta(\vec{x}-\vec{x'})
ρ ( x ) = q δ ( x − x ′ )
∇ 2 Φ ( x ⃗ ) = q 4 π ϵ 0 ∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = ? − q ϵ 0 δ ( x ⃗ − x ′ ⃗ )
\nabla^2\Phi(\vec{x}) = \frac{q}{4\pi \epsilon_0 } \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} \overset{?}{=}
-\frac{q}{\epsilon_0}\delta(\vec{x}-\vec{x'})
∇ 2 Φ ( x ) = 4 π ϵ 0 q ∇ 2 ∣ x − x ′ ∣ 1 = ? − ϵ 0 q δ ( x − x ′ )
prove:
∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = − 4 π δ ( x ⃗ − x ′ ⃗ )
\boxed{\nabla^2 \frac{1}{|\vec{x}-\vec{x'}|}= -4 \pi \delta (\vec{x}-\vec{x'})}
∇ 2 ∣ x − x ′ ∣ 1 = − 4 π δ ( x − x ′ )
The above statement is equivalent to proving
{ ∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = 0 if x ⃗ ≠ x ′ ⃗ ∫ ∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ d 3 x = − 4 π ∫ δ ( x ⃗ − x ′ ⃗ ) d 3 x = − 4 π
\left\{
\begin{array}{ll}
\displaystyle \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|}=0 \quad \text{if } \vec{x} \ne \vec{x'} \\
\displaystyle \int \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} d^3x = - 4 \pi \int \delta (\vec{x}-\vec{x'}) d^3x = - 4 \pi
\end{array}
\right.
⎩ ⎨ ⎧ ∇ 2 ∣ x − x ′ ∣ 1 = 0 if x = x ′ ∫ ∇ 2 ∣ x − x ′ ∣ 1 d 3 x = − 4 π ∫ δ ( x − x ′ ) d 3 x = − 4 π
Switch to spherical coordinate with r ≡ ∣ x ⃗ − x ′ ⃗ ∣ r \equiv |\vec{x}-\vec{x'}| r ≡ ∣ x − x ′ ∣
∇ 2 = 1 r 2 ∂ ∂ r ( r 2 ∂ ∂ r ) + 1 r 2 sin θ ∂ ∂ θ ( sin θ ∂ ∂ θ ) + 1 r 2 sin θ ∂ 2 ∂ ϕ 2
\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r}\left( r^2\frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin{\theta}} \frac{\partial}{\partial \theta}\left(
\sin{\theta}\frac{\partial}{\partial \theta}
\right)
+ \frac{1}{r^2 \sin{\theta}}\frac{\partial^2}{\partial \phi^2}
∇ 2 = r 2 1 ∂ r ∂ ( r 2 ∂ r ∂ ) + r 2 sin θ 1 ∂ θ ∂ ( sin θ ∂ θ ∂ ) + r 2 sin θ 1 ∂ ϕ 2 ∂ 2
⇒ ∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = ∇ 2 1 r = 1 r 2 ∂ ∂ r ( − r 2 r 2 ) = 0 if r ≠ 0
\Rightarrow \nabla^2 \frac{1}{|\vec{x}-\vec{x'}|} = \nabla^2 \frac{1}{r} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(
- \frac{r^2}{r^2}
\right)
= 0 \quad \text{if } r \ne 0
⇒ ∇ 2 ∣ x − x ′ ∣ 1 = ∇ 2 r 1 = r 2 1 ∂ r ∂ ( − r 2 r 2 ) = 0 if r = 0
∫ V ∇ 2 ( 1 r ) d 3 x = ∫ V ∇ ⃗ ⋅ ( ∇ ⃗ 1 r ) d 3 x ⟹ divergence theorem ∮ S ( ∇ ⃗ 1 r ) ⋅ e r ⃗ d a
\int_{\mathbb{V}} \nabla^2 \left(
\frac{1}{r}
\right) d^3x
= \int_{\mathbb{V}} \vec{\nabla} \cdot \left(
\vec{\nabla} \frac{1}{r}
\right) d^3x
\overset{\text{divergence theorem}}{\Longrightarrow} \oint_{\mathbb{S}}\left(
\vec{\nabla} \frac{1}{r}
\right) \cdot \vec{e_r} \, da
∫ V ∇ 2 ( r 1 ) d 3 x = ∫ V ∇ ⋅ ( ∇ r 1 ) d 3 x ⟹ divergence theorem ∮ S ( ∇ r 1 ) ⋅ e r d a
∮ S − 1 r 2 e r ⃗ ⏞ ∇ ⃗ 1 r ⋅ e r ⃗ r 2 sin θ d θ d ϕ ⏞ = − 4 π
\oint_{\mathbb{S}} \overbrace{- \frac{1}{r^2} \vec{e_r}}^{\vec{\nabla} \frac{1}{r}} \cdot \vec{e_r} \overbrace{r^2 \sin{\theta} \, d \theta \, d \phi} = -4 \pi
∮ S − r 2 1 e r ∇ r 1 ⋅ e r r 2 sin θ d θ d ϕ = − 4 π
where r ≠ 0 r \ne 0 r = 0 on the surface
Generalize to continuous charge distribution
∇ 2 1 4 π ϵ 0 ⏞ Φ ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d 3 x ′ = − 4 π 4 π ϵ 0 ∫ ρ ( x ′ ⃗ ) δ ( x ⃗ − x ′ ⃗ ) d 3 x = − ρ ( x ′ ⃗ ) ϵ 0
\nabla^2 \overbrace{\frac{1}{4\pi \epsilon_0}}^{\Phi} \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' = - \frac{4 \pi}{4 \pi \epsilon_0} \int \rho (\vec{x'}) \delta(\vec{x}-\vec{x'}) d^3x = - \frac{\rho (\vec{x'})}{\epsilon_0}
∇ 2 4 π ϵ 0 1 Φ ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x ′ = − 4 π ϵ 0 4 π ∫ ρ ( x ′ ) δ ( x − x ′ ) d 3 x = − ϵ 0 ρ ( x ′ )
# 1.8 Green’s Theorem
George Green “An Essay on the Application of Mathematical
Analysis to the Theories of Electricity and Magnetism” (1828)
→ \rightarrow → Mathematical tool to handle boundary conditions
Recall divergence throrem:
∫ V ∇ ⃗ ⋅ A ⃗ d 3 x = ∮ S A ⃗ ⋅ n ⃗ d a
\int_{\mathbb{V}} \vec{\nabla} \cdot \vec{A} \,d^3x = \oint_{\mathbb{S}} \vec{A} \cdot \vec{n} \, da
∫ V ∇ ⋅ A d 3 x = ∮ S A ⋅ n d a
Let A ⃗ = ϕ ∇ ⃗ ψ \vec{A} = \phi \vec{\nabla} \psi A = ϕ ∇ ψ
Left side : ∇ ⃗ ⋅ A ⃗ = ∇ ⃗ ⋅ ( ϕ ∇ ⃗ ψ ) ϕ ∇ 2 ψ + ∇ ⃗ ϕ ⋅ ∇ ⃗ ψ
\text{Left side : } \vec{\nabla} \cdot \vec{A} = \vec{\nabla} \cdot (\phi \vec{\nabla} \psi ) \phi \nabla^2 \psi + \vec{\nabla}\phi \cdot \vec{\nabla}\psi
Left side : ∇ ⋅ A = ∇ ⋅ ( ϕ ∇ ψ ) ϕ ∇ 2 ψ + ∇ ϕ ⋅ ∇ ψ
Right side : A ⃗ ⋅ n ⃗ = ϕ ∇ ⃗ ψ ⋅ n = ϕ ∂ ∂ n ψ
\text{Right side : } \vec{A} \cdot \vec{n} = \phi \vec{\nabla} \psi \cdot n =\phi \frac{\partial}{\partial n }\psi
Right side : A ⋅ n = ϕ ∇ ψ ⋅ n = ϕ ∂ n ∂ ψ
Green’s first identity
∫ V ( ϕ ∇ 2 ψ + ∇ ϕ ⃗ ⋅ ∇ ⃗ ψ ) d 3 x = ∮ S ϕ ∂ ∂ n ψ d a 1 ◯
\int_{\mathbb{V}} (\phi \nabla^2 \psi + \vec{\nabla \phi} \cdot \vec{\nabla} {\psi} ) \, d^3x = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n} \psi \, da \quad \text{\textcircled{1}}
∫ V ( ϕ ∇ 2 ψ + ∇ ϕ ⋅ ∇ ψ ) d 3 x = ∮ S ϕ ∂ n ∂ ψ d a 1 ◯
Interchange ψ ↔ ϕ \psi \leftrightarrow \phi ψ ↔ ϕ
∫ V ( ψ ∇ 2 ϕ + ∇ ψ ⃗ ⋅ ∇ ⃗ ϕ ) d 3 x = ∮ S ψ ∂ ∂ n ϕ d a 2 ◯
\int_{\mathbb{V}} (\psi \nabla^2 \phi + \vec{\nabla \psi} \cdot \vec{\nabla} {\phi} ) \, d^3x = \oint_{\mathbb{S}} \psi \frac{\partial}{\partial n} \phi \, da \quad \text{\textcircled{2}}
∫ V ( ψ ∇ 2 ϕ + ∇ ψ ⋅ ∇ ϕ ) d 3 x = ∮ S ψ ∂ n ∂ ϕ d a 2 ◯
1 ◯ - 2 ◯ \text{\textcircled{1} - \textcircled{2}} 1 ◯ - 2 ◯
Green’s Second identity / Green’s theorem
∫ V ( ϕ ∇ 2 ψ − ψ ∇ 2 ϕ ) d 3 x = ∮ S ϕ ∂ ∂ n ψ − ψ ∂ ∂ n ϕ d a 3 ◯
\int_{\mathbb{V}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi ) \, d^3x = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n} \psi - \psi \frac{\partial}{\partial n} \phi \, da \quad \text{\textcircled{3}}
∫ V ( ϕ ∇ 2 ψ − ψ ∇ 2 ϕ ) d 3 x = ∮ S ϕ ∂ n ∂ ψ − ψ ∂ n ∂ ϕ d a 3 ◯
switch to the prime coordinate x ⃗ → x ′ ⃗ \vec{x} \rightarrow \vec{x'} x → x ′
∫ V ( ϕ ∇ ′ 2 ψ − ψ ∇ ′ 2 ϕ ) d 3 x ′ = ∮ S ϕ ∂ ∂ n ′ ψ − ψ ∂ ∂ n ′ ϕ d a ′
\int_{\mathbb{V}} (\phi {\nabla'}^2 \psi - \psi {\nabla'}^2 \phi ) \, d^3x' = \oint_{\mathbb{S}} \phi \frac{\partial}{\partial n'} \psi - \psi \frac{\partial}{\partial n'} \phi \, da'
∫ V ( ϕ ∇ ′ 2 ψ − ψ ∇ ′ 2 ϕ ) d 3 x ′ = ∮ S ϕ ∂ n ′ ∂ ψ − ψ ∂ n ′ ∂ ϕ d a ′
Let ψ ( x ′ ⃗ ) = 1 ∣ x ⃗ − x ′ ⃗ ∣ \displaystyle \psi (\vec{x'}) = \frac{1}{|\vec{x}-\vec{x'}|} ψ ( x ′ ) = ∣ x − x ′ ∣ 1
∇ ′ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = ∇ 2 1 ∣ x ⃗ − x ′ ⃗ ∣ = − 4 π δ ( x ⃗ − x ′ ⃗ )
{\nabla'}^2\frac{1}{|\vec{x}-\vec{x'}|} = {\nabla}^2\frac{1}{|\vec{x}-\vec{x'}|} = -4 \pi \delta (\vec{x}-\vec{x'})
∇ ′ 2 ∣ x − x ′ ∣ 1 = ∇ 2 ∣ x − x ′ ∣ 1 = − 4 π δ ( x − x ′ )
Let ϕ ( x ′ ⃗ ) = Φ ( x ′ ⃗ ) \phi (\vec{x'}) = \Phi (\vec{x'}) ϕ ( x ′ ) = Φ ( x ′ )
∇ ′ 2 Φ ( x ′ ⃗ ) = − ρ ( x ′ ⃗ ) ϵ 0
{\nabla'}^2 \Phi (\vec{x'}) = - \frac{\rho (\vec{x'})}{\epsilon_0}
∇ ′ 2 Φ ( x ′ ) = − ϵ 0 ρ ( x ′ )
3 ◯ → ∫ V { Φ ( x ′ ⃗ ) [ − 4 π δ ( x ⃗ − x ′ ⃗ ) ] + ρ ( x ′ ⃗ ) ϵ 0 ∣ x ⃗ − x ′ ⃗ ∣ } d 3 x ′
\text{\textcircled{3}} \rightarrow \int_{\mathbb{V}}\left\{
\Phi (\vec{x'}) [
-4 \pi \delta(
\vec{x}-\vec{x'}
)
]
+ \frac{\rho({\vec{x'}})}{ \epsilon_0 |\vec{x}-\vec{x'}|}
\right\} \, d^3x'
3 ◯ → ∫ V { Φ ( x ′ ) [ − 4 π δ ( x − x ′ )] + ϵ 0 ∣ x − x ′ ∣ ρ ( x ′ ) } d 3 x ′
= ∮ S ( Φ ( x ′ ⃗ ) ∂ ∂ n ′ 1 ∣ x ⃗ − x ′ ⃗ ∣ − 1 ∣ x ⃗ − x ′ ⃗ ∣ ∂ ∂ n ′ Φ ( x ′ ⃗ ) ) d a ′
= \oint_{\mathbb{S}} \left(
\Phi (\vec{x'} ) \frac{\partial}{\partial n'}\frac{1}{|\vec{x}-\vec{x'}|}-\frac{1}{|\vec{x}-\vec{x'}|}\frac{\partial}{\partial n'}\Phi (\vec{x'} )
\right) \, da'
= ∮ S ( Φ ( x ′ ) ∂ n ′ ∂ ∣ x − x ′ ∣ 1 − ∣ x − x ′ ∣ 1 ∂ n ′ ∂ Φ ( x ′ ) ) d a ′
If x ⃗ \vec{x} x lies within V \mathbb{V} V :
∫ V Φ ( x ′ ⃗ ) δ ( x ⃗ − x ′ ⃗ ) d 3 x ′ = Φ ( x ⃗ )
\int_{\mathbb{V}} \Phi (\vec{x'} )\delta(\vec{x}-\vec{x'}) \, d^3x' = \Phi (\vec{x})
∫ V Φ ( x ′ ) δ ( x − x ′ ) d 3 x ′ = Φ ( x )
Integral Statement of Φ ( x ⃗ ) \Phi (\vec{x}) Φ ( x )
∴ Φ ( x ⃗ ) = 1 4 π ϵ 0 ∫ V ρ ( x ′ ⃗ ) ∣ x ⃗ − x ′ ⃗ ∣ d 3 x ′ + 1 4 π ∮ S [ 1 ∣ x ⃗ − x ′ ⃗ ∣ ∂ Φ ∂ n ′ − Φ ∂ ∂ n ′ 1 ∣ x ⃗ − x ′ ⃗ ∣ ] d a ′ ⏞ → 0 for S = infinite space
\therefore \Phi (\vec{x}) = \frac{1}{4 \pi \epsilon_0} \int_{\mathbb{V}} \frac{\rho (\vec{x'})}{|\vec{x}-\vec{x'}|} d^3x' + \overbrace{\frac{1}{4 \pi} \oint_{\mathbb{S}} \left[
\frac{1}{|\vec{x}-\vec{x'}|}\frac{\partial \Phi}{\partial n'}-\Phi \frac{\partial}{\partial n'}\frac{1}{|\vec{x}-\vec{x'}|}
\right]\, da' }^{ \rightarrow 0 \text{ for } \mathbb{S} = \text{ infinite space }}
∴ Φ ( x ) = 4 π ϵ 0 1 ∫ V ∣ x − x ′ ∣ ρ ( x ′ ) d 3 x ′ + 4 π 1 ∮ S [ ∣ x − x ′ ∣ 1 ∂ n ′ ∂ Φ − Φ ∂ n ′ ∂ ∣ x − x ′ ∣ 1 ] d a ′ → 0 for S = infinite space
not a solution “over specification”
ref: 古典電力學一 王喬萱教授 上課講義